Fluid mechanics of nodal flow due to embryonic primary cilia.

نویسندگان

  • D J Smith
  • J R Blake
  • E A Gaffney
چکیده

Breaking of left-right symmetry is crucial in vertebrate development. The role of cilia-driven flow has been the subject of many recent publications, but the underlying mechanisms remain controversial. At approximately 8 days post-fertilization, after the establishment of the dorsal-ventral and anterior-posterior axes, a depressed structure is found on the ventral side of mouse embryos, termed the ventral node. Within the node, 'whirling' primary cilia, tilted towards the posterior, drive a flow implicated in the initial left-right signalling asymmetry. However, the underlying fluid mechanics have not been fully and correctly explained until recently and accurate characterization is required in determining how the flow triggers the downstream signalling cascades. Using the approximation of resistive force theory, we show how the flow is produced and calculate the optimal configuration to cause maximum flow, showing excellent agreement with in vitro measurements and numerical simulation, and paralleling recent analogue experiments. By calculating numerical solutions of the slender body theory equations, we present time-dependent physically based fluid dynamics simulations of particle pathlines in flows generated by large arrays of beating cilia, showing the far-field radial streamlines predicted by the theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow

The primary cilium which is an organelle in nearly every cell in the vertebrate body extends out of the cell surface like an antenna and is known as cell sensor of mechanical and chemical stimuli. In previous numerical simulations, researchers modeled this organelle as a cantilevered beam attached to the cell surface. In the present study, however, we present a novel model that accommodates for...

متن کامل

Cilia-Mediated Signalling in the Embryonic Nodes: A Computational Fluid-Structure-Protein Interaction (FSPI) Model

The breaking of left-right symmetry in the mammalian embryo is believed to occur in a transient embryonic structure, the node, when cilia create a leftward flow of liquid. It has been widely confirmed that this nodal flow is the first sign of left-right differentiation; however, the mechanism through which embryonic cilia produce their movement and how the leftward flow confers laterality are s...

متن کامل

Defective Nodal and Cerl2 expression in the Arl13b(hnn) mutant node underlie its heterotaxia.

Specification of the left-right axis during embryonic development is critical for the morphogenesis of asymmetric organs such as the heart, lungs, and stomach. The first known left-right asymmetry to occur in the mouse embryo is a leftward fluid flow in the node that is created by rotating cilia on the node surface. This flow is followed by asymmetric expression of Nodal and its inhibitor Cerl2...

متن کامل

Randomization of Left–Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein

Microtubule-dependent motor, murine KIF3B, was disrupted by gene targeting. The null mutants did not survive beyond midgestation, exhibiting growth retardation, pericardial sac ballooning, and neural tube disorganization. Prominently, the left-right asymmetry was randomized in the heart loop and the direction of embryonic turning. lefty-2 expression was either bilateral or absent. Furthermore, ...

متن کامل

11-P001 rks reveals a dual role for calcium signalling in cilia motility and specification of the left side in mice

Specification of the mammalian left–right (L–R) axis is controlled by fluid flows in the embryonic node, a ciliated pit like structure located at the distal tip of the mouse embryo. Nodal cilia rotate so as to cause a leftward fluid flow-this has been experimentally demonstrated to control embryonic sidedness. How the embryo interprets this flow remains the subject of debate. The two cilia hypo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 5 22  شماره 

صفحات  -

تاریخ انتشار 2008